Myometrial relaxation of mice via expression of two pore domain acid sensitive K+ (TASK-2) channels

نویسندگان

  • Kyu-Sang Kyeong
  • Seung Hwa Hong
  • Young Chul Kim
  • Woong Cho
  • Sun Chul Myung
  • Moo Yeol Lee
  • Ra Young You
  • Chan Hyung Kim
  • So Yeon Kwon
  • Hikaru Suzuki
  • Yeon Jin Park
  • Eun-Hwan Jeong
  • Hak Soon Kim
  • Heon Kim
  • Seung Woon Lim
  • Wen-Xie Xu
  • Sang Jin Lee
  • Il Woon Ji
چکیده

Myometrial relaxation of mouse via expression of two-pore domain acid sensitive (TASK) channels was studied. In our previous report, we suggested that two-pore domain acid-sensing K(+) channels (TASK-2) might be one of the candidates for the regulation of uterine circular smooth muscles in mice. In this study, we tried to show the mechanisms of relaxation via TASK-2 channels in marine myometrium. Isometric contraction measurements and patch clamp technique were used to verify TASK conductance in murine myometrium. Western blot and immunehistochemical study under confocal microscopy were used to investigate molecular identity of TASK channel. In this study, we showed that TEA and 4-AP insensitive non-inactivating outward K(+) current (NIOK) may be responsible for the quiescence of murine pregnant longitudinal myometrium. The characteristics of NIOK coincided with two-pore domain acid-sensing K(+) channels (TASK-2). NIOK in the presence of K(+) channel blockers was inhibited further by TASK inhibitors such as quinidine, bupivacaine, lidocaine, and extracellular acidosis. Furthermore, oxytocin and estrogen inhibited NIOK in pregnant myometrium. When compared to non-pregnant myometrium, pregnant myometrium showed stronger inhibition of NIOK by quinidine and increased immunohistochemical expression of TASK-2. Finally, TASK-2 inhibitors induced strong myometrial contraction even in the presence of L-methionine, a known inhibitor of stretch-activated channels in the longitudinal myometrium of mouse. Activation of TASK-2 channels seems to play an essential role for relaxing uterus during pregnancy and it might be one of the alternatives for preventing preterm delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds.

Sour (acid) taste is postulated to result from intracellular acidification that modulates one or more acid-sensitive ion channels in taste receptor cells. The identity of such channel(s) remains uncertain. Potassium channels, by regulating the excitability of taste cells, are candidates for acid transducers. Several 2-pore domain potassium leak conductance channels (K(2)P family) are sensitive ...

متن کامل

Expression of Stretch-Activated Two-Pore Potassium Channels in Human Myometrium in Pregnancy and Labor

BACKGROUND We tested the hypothesis that the stretch-activated, four-transmembrane domain, two pore potassium channels (K2P), TREK-1 and TRAAK are gestationally-regulated in human myometrium and contribute to uterine relaxation during pregnancy until labor. METHODOLOGY We determined the gene and protein expression of K2P channels in non-pregnant, pregnant term and preterm laboring myometrium....

متن کامل

Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification.

Two-pore domain K(+) channels (K2P) mediate background K(+) conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K(+) channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pH(o)) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pH(o)...

متن کامل

Acid-sensitive TWIK and TASK channels show dynamic ion selectivity

Background: Two-pore domain K channels mediate background K conductance and regulate cellular function. Results: Low extracellular pH (pHo) significantly increases the Na to K relative permeability of TWIK-1, TASK-1, and TASK-3 K channels. Conclusion: TWIK-1, TASK-1, and TASK-3 channels change ion selectivity in lowered pHo. Significance: The findings provide insights on the mechanism of regula...

متن کامل

Novel Drosophila two-pore domain K channels: rescue of channel function by heteromeric assembly.

Ten genes with essential structural features of two-pore domain potassium channels were identified in the genome of Drosophila melanogaster. Two Drosophila two-pore domain potassium subunits displayed substantial amino acid similarity to human TWIK-related acid-sensitive K(+) (TASK) channels (38-43%), whereas all others were less than 26% similar to any human homolog. The cDNAs of Drosophila TA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2016